TRIP is a general computer algebra system dedicated to celestial mechanics. It includes a numerical kernel and has interfaces to gnuplot and xmgrace. Computations can be performed with double, quadruple, or multi-precision. Users can dynamically load external libraries written in C, C++, or Fortran. Parallel computations on multivariate polynomials can be performed.

Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use. The API is deliberately similar to Matlab's. Integer, floating point, and complex numbers are supported, as well as a subset of trigonometric and statistics functions. Various matrix decompositions are provided through optional integration with LAPACK and ATLAS numerics libraries. A delayed evaluation approach, based on template meta-programming, is used (during compile time) to combine several operations into one and reduce or eliminate the need for temporaries.

GNU TeXmacs is a free wysiwyw (what you see is what you want) editing platform with special features for scientists. The software aims to provide a unified and user friendly framework for editing structured documents with different types of content: text, mathematics, graphics, interactive content. TeXmacs can also be used as an interface to many external systems for computer algebra, numerical analysis, and statistics. New presentation styles can be written by the user and new features can be added to the editor using Scheme.

The Maximum Entropy Toolkit provides a set of tools and library for constructing maximum entropy (maxent) models in either Python or C++. It features conditional maximum entropy models, L-BFGS and GIS parameter estimation, Gaussian Prior smoothing, a C++ API, a Python extension module, a command line utility, and good documentation.

DOLFIN is the C++ interface of the FEniCS project for the Automation of Computational Mathematical Modeling (ACMM), providing a consistent PSE (Problem Solving Environment) for solving ordinary and partial differential equations. Key features include a simple, consistent and intuitive object-oriented API; automatic and efficient evaluation of variational forms through FFC; automatic and efficient assembly of linear systems; and support for general families of finite elements.

Motorsport is a project with a clear goal: to create the most realistic vehicle simulation possible. This includes cars and trucks, which can be driven using common input devices such as keyboards and steering wheels. It limits realism to what the hardware, and is intended for hardcore driving simulator fans. This means that it will try to have realistic physics, but not necessarily 'playable', 'easy', or 'fun' physics - these characteristics will depend on which vehicle is driven and on what a person is trying to drive it.

MpNT is a multi-precision number theory library that provides a base for building cryptographic applications. It may also be used in any other domain where efficient large number computations are required. The library supports integer, modular, and floating point arithmetic with practically unlimited precision. It is both speed efficient and highly portable without disregarding code structure and clarity.