RSS 7 projects tagged "machine learning"

Download Website Updated 17 Feb 2014 SHOGUN

Screenshot
Pop 354.46
Vit 37.93

SHOGUN is a machine learning toolbox whose focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, all making use of the same underlying, efficient kernel implementations. Apart from SVMs and regression, SHOGUN also features a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons, and algorithms to train hidden Markov models. SHOGUN can be used from within C++, Matlab, R, Octave, and Python.

Download Website Updated 07 Apr 2014 Armadillo C++ Library

Screenshot
Pop 612.73
Vit 118.47

Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use. The API is deliberately similar to Matlab's. Integer, floating point, and complex numbers are supported, as well as a subset of trigonometric and statistics functions. Various matrix decompositions are provided through optional integration with LAPACK and ATLAS numerics libraries. A delayed evaluation approach, based on template meta-programming, is used (during compile time) to combine several operations into one and reduce or eliminate the need for temporaries.

Download No website Updated 01 Oct 2010 Pinta

Screenshot
Pop 61.32
Vit 2.53

Pinta is an extremely versatile, extensible, self-learning image classification program. It uses texture and color analysis and neural network techniques to automatically learn differences in images. It comes with a C API for easy integration into other software. It is built on top of the pattern recognition and image analysis platform Into.

No download Website Updated 06 May 2010 scikits.learn

Screenshot
Pop 17.49
Vit 38.00

scikits.learn is a Python module that integrates classic machine learning algorithms in the tightly-knit world of scientific Python packages. It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering.

No download Website Updated 30 Dec 2012 MyMediaLite

Screenshot
Pop 79.12
Vit 8.03

MyMediaLite is a lightweight, multi-purpose library of recommender system algorithms. It addresses the two most common scenarios in collaborative filtering: rating prediction (e.g. on a scale of 1 to 5 stars), and item prediction from implicit feedback (e.g. from clicks or purchase actions). It contains dozens of recommender engines, including state-of-the-art matrix factorization methods. It also supports real-time updates to the recommender engines, storing engines to disk and reloading them again, and several evaluation measures to compare the accuracy of different recommender system methods. Three command-line programs that offer most of the functionality contained in the library are included.

No download Website Updated 13 Jul 2012 Treba

Screenshot
Pop 16.85
Vit 25.40

Treba is a commandline tool for training, decoding, and calculating with weighted (probabilistic) finite state automata (WFSA/PFSA). Training algorithms include Baum-Welch (EM), Viterbi training, and Baum-Welch augmented with deterministic annealing. Treba is optimized for speed and numerical stability, and training algorithms can be run multi-threaded on hardware with multiple cores/CPUs. Forward, backward, and Viterbi decoding are supported. Automata for training/decoding are read from a text file, or can be generated randomly or with uniform transition probabilities with different topologies (ergodic or fully connected, Bakis or left-to-right, or deterministic). Observations used for training or decoding are read from text files compatible with AT&T finite state tools and OpenFST.

Download Website Updated 07 Jan 2014 MLPACK

Screenshot
Pop 100.82
Vit 2.65

MLPACK is a C++ machine learning library with an emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and maximum flexibility for expert users. It contains algorithms such as k-means, Gaussian mixture models, hidden Markov models, density estimation trees, kernel PCA, locality-sensitive hashing, sparse coding, linear regression and least-angle regression.

Screenshot

Project Spotlight

Monit

A utility for monitoring Unix system services.

Screenshot

Project Spotlight

PHP-Calendar

A Web-based calendar written in PHP/SQL.