TRIP is a general computer algebra system dedicated to celestial mechanics. It includes a numerical kernel and has interfaces to gnuplot and xmgrace. Computations can be performed with double, quadruple, or multi-precision. Users can dynamically load external libraries written in C, C++, or Fortran. Parallel computations on multivariate polynomials can be performed.

SHTns is a high-performance Spherical Harmonic Transform library. It was designed for numerical simulation (fluid flows, mhd, etc.) in spherical geometries, but can be used for any kind of problem involving scalar or vector spherical harmonics. It is very fast, thanks to careful vectorization and runtime tuning. It supports multi-threaded transforms via OpenMP. It features scalar and vector transforms, synthesis and analysis, and flexible truncation and normalization. A Python interface is included.

Social Networks Visualizer (SocNetV) is a flexible and user-friendly tool for the analysis and visualization of Social Networks. It lets you construct mathematical graphs with a few clicks on a virtual canvas, load networks of various formats (GraphViz, GraphML, Adjacency, Pajek, UCINET, etc), or create a network by crawling all links in a Web page. The application can compute basic network properties, such as density, diameter, and distances (shortest path lengths), as well as more advanced structural statistics, such as node and network centralities (i.e. closeness, betweenness, graph), clustering coefficient, etc.

GetDP is a general finite element solver using mixed elements to discretize de Rham-type complexes in one, two, and three dimensions. The main feature of GetDP is the closeness between the input data defining discrete problems (written by the user in ASCII data files) and the symbolic mathematical expressions of these problems.

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Theano features tight integration with numpy, transparent use of a GPU, efficient symbolic differentiation, speed and stability optimizations, dynamic C code generation, and extensive unit-testing and self-verification. Theano has been powering large-scale computationally intensive scientific investigations since 2007. But it is also approachable enough to be used in the classroom (IFT6266 at the University of Montreal).

The ATLAS (Automatically Tuned Linear Algebra Software) project is an ongoing research effort focusing on applying empirical techniques in order to provide portable performance. It provides C and Fortran77 interfaces to a portably efficient BLAS implementation, as well as a few routines from LAPACK.

Calc is arbitrary precision arithmetic system that uses a C-like language. It's useful as a calculator, an algorithm prototype, and as a mathematical research tool. More importantly, calc provides a machine-independent means of computation. Calc comes with a rich set of builtin mathematical and programmatic functions.

Genius is an arbitrary precision integer and multiple precision floating point calculator. It includes its own programming language similar in some aspects to C, bc, or Pascal. It can deal with rational numbers and complex numbers. It has matrix support as well. It uses the gmp library so it is very fast for calculations of large numbers. It has a command line and a GNOME interface. The GNOME interface supports plotting functions and 3D surfaces.

Groups, Algorithms, and Programming (GAP) is a system for computational discrete algebra with particular emphasis on computational group theory and related areas. It provides a Pascal-like interpreted language, data types for many algebraic objects, a function library, and large libraries of data.